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QSPR MODELS ON FRAGMENT DESCRIPTORS 

Vitaly Solov’ev  and Alexandre Varnek  

 

The tutorials illustrate QSPR modeling by the ISIDA_QSPR program [1-4], realizing 

Multiple Linear Regression (MLR) analysis on the base of ISIDA Substructure Molecular 

Fragment (SMF) descriptors. ISIDA SMF descriptors are counts of the occurrence of subgraphs 

(fragments) in a molecule, where each descriptor element is associated to one of the detected 

possible fragments, complying with the user-proposed fragmentation scheme (fragment type, 

size, etc). The program builds MLR models combining forward [4] and backward [3] stepwise 

variable selection techniques.  

The ISIDA_QSPR program is a graphical interface piloting this workflow and supporting 

graphical analysis of the results linked to the compound structures. It runs under the Windows 

operating system (ISIDA_QSPR.exe). It is strongly recommended to use of a non-system disk 

for the ISIDA_QSPR directory. 

 

The following exercises are considered in the tutorial: 

1. Individual MLR model - multiple linear regression on a single SMF descriptor set 

with descriptor selection, property predictions on a test set. 

2. Fragment analysis of the individual MLR model: fragment contributions in modeling 

property, a pairwise correlation matrix for fragment contributions and the similarity 

of molecules according to SMF. 

3. External n-fold cross-validation. 

4. Consensus modeling based on the ensemble of Multiple Linear Regression models 

involving various types of SMF descriptors. 

5. Property predictions and virtual screening  

 

 

The tutorials includes step by step instructions indicated by the vertical line on the left side 
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Abbreviations 
 
AD  Applicability domain 
CM  Consensus model 
EdChemS The sketcher of the MOL files 
EdiSDF SDF manager of the ISIDA_QSPR program 
F  The Fischer's criterion 
FIT  The Kubinyi fitness criterion 
FVS  Forward variable selection 
HIV  The human immunodeficiency virus 
HRF  The Hamilton R-factor percentage 
ISIDA  In SIlico design and data analysis 
LMO  Leave-many-out 
LOO  Leave-one-out 
MAE  Mean absolute error 
MLR  Multiple linear regression 
n  The number of data points  
n-fold CV n-Fold cross-validation 
Q  Leave-one-out cross–validation correlation coefficient 
QSPR  Quantitative structure–property relationships 
R  The Pearson’s correlation coefficient 
Rdet

2  Squared coefficient of determination 
RMSE  Root-mean squared error 
s  Standard deviation 
SDF  Structure data file 
SMF  Substructural molecular fragments 
SVD  Singular Value Decomposition 
TC  The Tanimoto similarity coefficients 
TIBO  Tetrahydroimidazobenzodiazepinone derivatives 
Ycalc  The fitted property 
Yexp  The modelling property 
 
 
 

DATA 

The following Structure-Data Files (SDF) are used in this tutorial: AHIV-TIBO.SDF and 

TEST_AHIV-TIBO.SDF. The first file contains experimental values of anti-HIV activity log 

(1/IC50) of 57 tetrahydroimidazobenzodiazepinone (TIBO) derivatives [5], where IC50 is the 

concentration (mol/L) of the TIBO compound inhibiting 50% of the HIV-1 reverse transcriptase 

activity. The second file TEST_AHIV-TIBO.SDF contains five TIBO derivatives for which 

experimental anti-HIV activities are available and seven virtual TIBO derivatives generated by 

the CombiLIB / EdChemS tool [6, 7]. Experimental values of anti-HIV activity are represented 

by the log_1_C_exp. The input files must be located in the ISIDA_QSPR program directory 
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.  

EXERCISE 1. Individual MLR model: modeling setup and output analysis 

Goal:Building an individual MLR model based on SMF descriptors. The user needs only input 

files in SDF forma to perform the modeling on the training set  and predictions on the test set. 

 

Click the Single Model button of the ISIDA_QSPR program (Figure 1) to open the Single Model 

Calculations dialog box (Figure 2). The dialog box includes the Data panel for data input setup, 

the Descriptors panel for selection of the SMF descriptor type, the Model panel for modeling 

setup, and the Validation internal and external model validation setup (Figure 2). 

 

 
Figure 1. The ISIDA_QSPR Desktop. 

 

 
Figure 2. The single model calculations Dialog box. 
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1.1. ISIDA_QSPR input 

Input data for ISIDA_QSPR should be prepared in Structure-Data File format [8], where the 

modeled property is represented by a data field. The property data field should be specified for 

all records in SDF, although the values of the property for the test compounds may be absent. 

Molecular structures may be represented as 2D- or 3D-structures. As a rule, hydrogen atoms of 

the structures are not specified, although molecules with explicit hydrogen atoms are supported 

[9, 10]. The input file must be located in the ISIDA_QSPR program directory.  

 

From the Data panel of the single model building Dialog box (Figure 2), click on the Open SDF 

button and proceed to opening AHIV-TIBO.SDF file. The Input SD File: AHIV-TIBO.SDF label 

appears in the Data panel (Figure 2).  The table in the Data panel includes the information stored 

in Field name and Property value fields (Figure 2) of the AHIV-TIBO.SDF file. Click on the 

log_1_C_exp cell of the Field name column to select the modelling property (Yexp). The 

Modelling Property: log_1_C_exp label appears in the Data panel (Figure 2). 

 

The SD File can be edited using EdiSDF tool. Click Tools → SDF Editor of the ISIDA_QSPR 

main menu (Figure 1) to open the EdiSDF manager (Figure 3). This versatile tool allows one to 

add new entries to the SD File, to add new data fields or edit existing ones, or to edit the 

structures (Figure 3). The current SDFs do not need any fixing, but we encourage the reader to 

try to use this self-explanatory tool to complete or edit corrupted SD files.  

 

  
Figure 3. The EdiSDF (left) and EdChemS (right) graphical interface. 
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1.2. Data split onto training and test sets 

ISIDA_QSPR can split the initial data set into two subsets: training and test sets for modelbuing 

and validation, respectively. The program uses a MASK file (*.msk) to indicate the train / test 

status for each compound. By default, ISIDA_QSPR produces mask files in which every N-th 

compound is kept out for testing, systematically starting from the M-th compound in the list 

(M≤N).  

From the Data panel of the single model calculations Dialog box (Figure 2), click on the Create 

MASK button. The Create Mask Dialog box appears (Figure 3). Click on the Create MASK with 

TEST SET radio button; enter 5 in the each edit box and 5 in the starting from edit box. In the 

case shown on Figure 3, each fifth compound will be used for the test set. Click on the START 

button to save or overwrite the mask file AHIV-TIBO.MSK in the ISIDA_QSPR directory. The 

MASK file: AHIV-TIBO.MSK label appears in the Data panel (Figure 2). Click on the Data 

TEST button to verify the input data. The Information dialog box appears with message: “Input 

data files are in internal agreement”. Click on the OK button to close the Information dialog 

box. 

 

 

Figure 3. The Create Mask Dialog box. 

 

1.3. Substructure Molecular Fragment (SMF) descriptors  

The ISIDA_QSPR program includes a module for descriptor generation. ISIDA SMF, or simply 

SMF, descriptors [2, 5, 11-16] are counts of subgraphs (fragments) in a molecular graph. Each 

descriptor is associated with one of the fragments generated within the user-defined 

fragmentation scheme (fragment type, size, etc). The program can handle two main types of 

fragments (Figure 4): topological paths (I) and atom-centered fragments (atoms with nearest 

connected neighbors) (II). Either of these schemes supports indication of the atom and bond 

types (AB), the atom types only (A), the bond types only (B). The atom type can have different 
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attributes: atom symbol only, hybridization state, Benson's notation [17] and special mark [10, 

15] (Figure 5).  

 

 
Figure 4. Two main classes of ISIDA SMF fragments: topological paths (I) and atom-centered 

fragments (II). 

 

 

 
Figure 5. (top) Atomic attributes of substructural molecular fragments. (bottom) Example 
demonstrating different atomic labels used for the atom/bond paths containing 5 (in red) or 3 (in 
blue) atoms.  
 

The bond attributes support special typing (covalent for σ-bonds, coordinating for 

noncovalent bonds and dynamic for reactions), order (single, double, triple, aromatic) and 

topology (cyclic or acyclic bond) (Figure 6). For topological paths, their optimality (shortest or 
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all paths), length (minimal and maximal, by defaults ranged between 2 and 15 atoms) and 

explicitness (all atoms are indicated or terminal atoms are indicated only) can be toggled.  

 

 

 

 
Figure 6. The bond attributes for ISIDA SMF descriptors. 

 

 

From the Descriptors panel of the single model calculations Dialog box (Figure 2), click the 

Paths: Atoms-Bonds radio button, enter 2 in the min edit box and 12 in the max edit box for 

minimal and maximal path lengths, respectively. Please, verify that the SMF Modifications group 

boxes of the Descriptors panel are not checked. Use by default 3 in the min count edit box and 1 

in the min compds edit box (Figure 2). For this exercise, choose shortest topological paths with 

explicit consideration of atom and bond types. Select the minimal (mmin = 2) and maximal (mmin 

= 12) numbers of atoms in the paths. Notice that the program will also generate all intermediate 

paths with m atoms: mmin ≤ m ≤ mmax. Please, verify that the Get SMF file only check box is not 

selected in the right bottom corner of the dialog box (Figure 2). This option is used only for the 

purpose to generate the SMF descriptors file and to store it in the working directory. 
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1.4. Regression equations  

Multiple linear regression analysis is applied to build relationships between the variables 

xi (SMF descriptors) and a dependent variable y (modeled property). Four types of equations are 

considered: 

 

 y = Σaixi + Γ     (1) 
         i 

 

 y = ao + Σaixi + Γ    (2) 
     i 

 

y = ao + Σaixi + Σ bi(2xi 
2
 - 1) + Γ  (3) 

      i    i 
 

y = ao + Σaixi + Σbikxixk + Γ    (4) 
      i    i,k 
 

Here, ai and bi (bik) are fragment contributions, xi is the count of the i-th type fragment. The free 

term ao is fragment independent. An extra term Γ = ΣcmDm can be used to describe any specific 

feature of the compound using external descriptors Dm; by default Γ = 0. The parameters ai and bi 

are determined using the singular value decomposition (SVD) method [18]. 

From the Model panel (Figure 2), click on the Y = SUM(Ai*Xi) radio button to select linear 

fitting equation without the free term. 

 

1.5. Forward and backward stepwise variable selection  

Combined forward and backward stepwise techniques have been used to select the most 

pertinent variables from initial pool of the generated SMF descriptors [3, 4]. Initially, the 

forward stepwise variable selection (FVS) algorithm is applied to pre-select the user-defined 

number mp < n of the most relevant variables, where n is the size of training set. The FVS 

employs the known equations for the correlation coefficients between the response variable y and 

one- two- and three variables [19] in combination with the FSMLR algorithm [20]. Accordingly, 

three sub-algorithms (FVS-1, FVS-2 and FVS-3) have been used. At step p, the FVS procedure 

defines a new response variable y(p) = y(p-1) - ycalc, where ycalc = c0 + cixi (FVS-1), ycalc = c0 + cixi + 

cjxj (FVS-2) or ycalc = c0 + cixi + cjxj + ckxk (FVS-3), p = 1, 2, 3,… and y(0) = yexp. Thus at every 
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step, one (xi), two (xi, xj) or three variables (xi, xj and xk) are selected ensuring maximal 

correlation coefficients (Ry,i, Ry,ij or Ry,ijk correspondingly) between the variable(s) and y(p). The 

steps are repeated until the number of selected variables mp reaches a user-defined value. 

Optionally, variables xm with small correlation coefficient with y(p) (|Ry,m| < R0
y,m), those highly 

correlated with other variables xi (|Ri,m| > R0
i,m) or ‘‘rare’’ fragments (i.e., found in less than q 

molecules, here q < 3) can be eliminated. Here R0
y,m and R0

i,m are the user-defined thresholds. 

Then backward stepwise variable selection algorithm [3] eliminates the variables with low ti = 

ai/∆ai values for the models (1) and (2), where ∆ai is a standard deviation for the coefficient ai at 

the i-th variable in the model. First, the program selects the variable with the minimal tmin < t0, 

then it builds a new model excluding this variable. This procedure is repeated until t ≥ t0 for all 

selected variables. Here t0 is the tabulated value of Student’s criterion. By default, t0 equals 1.96. 

 

From the Model panel (Figure 2), check the forward variable selection and backward variable 

selection check boxes in the Variable Selection panel. Select the Ry,ij item from the dropdown 

list of the FVS algorithm combo box. On the right of the combo box, enter 60 in the edit box for 

the number of pre-selected variables as the percentage of the training set size. Enter 0.001 in the 

Ryi edit box and 0.99 in the Rij edit box for the correlation coefficient thresholds. Enter 1.96 in 

the t-test edit box, 1E-12 in the eps edit box and 0 in the exact edit box. Make sure that the m>n 

check box is not selected (Figure 2). 

 

1.6. Parameters of internal model validation 

One can distinguish internal and external validation. The former corresponds to the procedure - 

leave-one-out (LOO) or leave-many-out (LMO) cross-validation - performed after completing 

variables selection on the entire set. External validation in n-fold cross-validation or on a 

selected set is always performed on the data never used at any step of the modelbuilding. 

 

From the Validation panel (Figure 2), check the LOO check box to calculate the leave-one-out 

(LOO) cross-validation correlation coefficient (Q2). Make sure that the rapid check box is not 

selected. Check the LMO check box for the calculation of the leave-many-out (LMO) cross-

validation correlation coefficient. Enter 5 in the i-th point edit box for the LMO calculations: 

each fifth data point is discarded followed by the modelbuilding on the remaining training data 

and to use discarded objects for the model validation. Enter 1 in the External n-fold CV edit box 

to perform the modelling without external n-fold cross-validation (n-fold CV). 
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1.7. Applicability Domain (AD) of the model 

The applicability domain (AD) of the model defines an area of chemical space where the model 

is presumably accurate. Three types of AD definitions can be used either simultaneously or 

individually: fragment control, bounding box [21] and "quorum control" [22]. Bounding box 

approach considers AD as a multidimensional descriptor space confined by minimal and 

maximal occurrences of the descriptors involved in an individual model (AD1). Fragment 

control consists in discarding predictions for the compounds containing descriptors not occurring 

in the initial SMF pool generated for the training set (AD2). "Quorum control" is a threshold for 

the number of models accepted by AD1 and AD2. If this number is lower than a user defined 

threshold, the consensus prediction is ignored.  

 

From the Validation panel (Figure 2), check the Appl. Domain1 and Appl. Domain2 check 

boxes for the fragment control and bounding box of model applicability domain, respectively. 

 

1.8. Storage and retrieval modelling results 

 

The output files are saved in a user-selected directory by clicking Output Directory button 

(Figure 2). The Open dialog box appears, where click Open button to select the directory, for 

instance, C:\ISIDA_QSPR\RESULTS. The output files can always be opened by clicking File → 

Open in the ISIDA_QSPR main menu (Figure 1). Typically, the *.out file includes the name of 

the input SD file name as substring and begins with the date and the time of the performed 

calculations.  

 

1.9. Analysis of modelling results 

 

To build the model, click Start button in Single Model Calculations dialog box (Figure 2). The 

program creates 9 output files: 4 plain text and 5 files with the graphical representation of results, 

see their description below.  

The *.TXT file (here, <date_time>_AHIV-TIBO.TXT) contains the following information 

concerning the QSPR model: 

a) initial list of the SMF descriptors, 

b) setup parameters, 

c) groups of concatenated fragments always occurring in the same combination in each 

compound of the training set, 
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d) statistical parameters of the multiple linear regression (MLR) including Pearson’s 

correlation coefficient R, Fischer's criterion F, root mean squared error RMSE, mean 

absolute error MAE, the leave-one-out cross–validation correlation coefficient Q2, 

e) SMF descriptors involved in the MLR equation, regression equation coefficients (SMF 

contributions) ai and their random errors ∆ai for the 95% confidence interval, 

f) a pairwise correlation matrix for SMF contributions,  

g) singular values si obtained in SVD calculations(see section 1.4), 

h) Table of experimental (Yexp) and fitted (Ycalc) property, residuals Yexp - Ycalc for the 

training set. 

The *SMF file (<date_time>_AHIV-TIBO.SMF) contains full set of generated SMF 

descriptors and their counts in the training set molecules:  

Full Set of Fragments. 

     1.                                                          C*C 
     2.                                                          C-N 
     3.                                                          C-C 
     4.                                                          C=S 
     5.                                                         C-Cl 

… 
MATRIX: Compound (Line) × Fragment Count (Column). 
          1    2    3    4    5    6    7    8    9   10   11   12 ... 
     1    6    8    5    1    1    1    7    4    6    1    2    4 ... 
     2    6    8    5    1    1    1    7    4    6    1    2    4 ... 
     3    6    9    7    0    0    1    7    4    6    1    4    6 ... 
     4    6    8    6    0    0    1    7    4    6    1    2    6 ... 
     6    6    8    5    1    1    1    7    4    6    1    2    5 ... 
     7    6    8    7    1    1    0    7    4    6    1    2    5 ... 
     8    6    8    7    0    0    0    7    4    6    1    2    5 ... 
     9    6    8    7    0    0    1    7    4    6    1    2    5 ... 
    11    6    8    7    0    0    1    7    4    6    1    2    5 ... 
    12    6    8    6    0    0    1    7    4    6    1    2    5 ... 

… 

The *.MF file (<date_time>_AHIV-TIBO.MF) includes a list of SMF selected for the model 

and related descriptor's values for the training set molecules  

Set of Fragments for the Model. 

    12.                                                        C-C-N 
    32.                                                    C*C*C-N-C 
    36.                                                    C-C-N-C-N 
    54.                                                 Cl-C*C*C*C-N 
    83.                                            C*C*C-C-N-C-C=C-C 

… 
MATRIX: Compound (Line) × Fragment Count (Column). 
         12   32   36   54   83   88   99  144  167 
     1    4    4    1    1    4    1    0    0    0 
     2    4    4    1    1    4    1    0    0    0 
     3    6    4    1    0    4    1    2    2    0 
     4    6    4    1    0    0    1    1    0    0 
     6    5    4    2    1    0    1    0    0    0 
     7    5    4    2    1    0    0    0    0    0 
     8    5    4    2    0    0    0    1    0    2 
     9    5    4    2    0    0    1    1    0    2 
    11    5    4    2    0    0    1    1    0    1 
    12    5    4    1    0    4    1    1    0    0 

… 



12 
 

The *.DOC file (<date_time>_AHIV-TIBO_Pred.DOC) contains the Table of predicted 

property (right column) for the compounds of the test set defined by the MASK file. The Datum 

column contains experimental data. If a compound is identified as being outside the AD of the 

model, the predicted value for this compound is excluded: 

TABLE P1. Test set: Predicted property log_1_C_exp for the compounds from the AHIV-TIBO.SDF file. 
 
cmp. no.       Datum    IAB2-120 
       5        4.49        2.94 
      10        4.48             
      15        5.61        5.20 
      20        5.65        5.91 
      25        5.18        5.72 

… 

The *.RAC plot file (here, <date_time>_AHIV-TIBO.RAC) provides with the analysis of 

residuals (Yexp - Ycalc) as a function of fitted property (Ycalc) for the training set (Figure 7). The red 

dotted line corresponds to zero deviation. To visualize the residual value and corresponding 

molecular structure, move the mouse pointer on the data point (small circle) and click. The 

structure appears on the yellow background; the internal number of the data point, the Yexp, Ycalc 

and (Yexp - Ycalc) values emerge in the status bar at the bottom of the program window (Figure 7). 

The *PLT plot file (here, <date_time>_AHIV-TIBO.PLT) displays the correlation between 

Yexp and Ycalc as well as corresponding linear equation, including the number of data points (n), 

correlation coefficient (R), Fischer's criterion (F), standard deviation (s), squared coefficient of 

determination (Rdet
2), root-mean squared error (RMSE) and mean absolute error (MAE) (Figure 

8a).  

Remaining two plots (files <date_time>_AHIV-TIBO.LOO and <date_time>_AHIV-

TIBO.LMO) represent the relationships between Yexp and Ypred as well as corresponding linear 

equations with their statistical parameters for the leave-one-out (Figure 8b) and leave-many-out 

cross-validations.  

The fifth plot displays the results of linear regression analysis, including the plot Ypred versus 

Yexp for the test set defined by the MASK file. Objects identified as being outside AD of the 

model are excluded (Figure 8c). 
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Figure 7. The graphical window of residuals’ analysis. 

 

Molecular structure corresponding to selected data point on the graphs can be visualized by 

mouse clicking. The structure appears on the yellow background; the internal number of the data 

point, the Yexp and Ycalc (Ypred) values emerge in the status bar at the bottom of the program 

window. 

 

1.10. Root-Mean Squared Error (RMSE) estimation  

Root-mean squared error 𝑅𝑅𝑅𝑅 = [1/𝑛∑ (𝑌𝑒𝑒𝑒,𝑖 −  𝑌 𝑖)2𝑛
𝑖=1 ]1/2 characterizes the ability of 

the model to reproduce quantitatively the experimental data, where 𝑌 𝑖 is the fitted 𝑌𝑐𝑐𝑐𝑐,𝑖 or 

predicted 𝑌𝑒𝑝𝑒𝑝,𝑖 value of the property for the i-th data point. Typically, RMSE values increase in 

the order RMSE (fitting)  <  RMSE (LOO)  <  RMSE (external test set), as demonstrated in Figure 

8. This can be explained by the fact, that information about the training set compounds is used at 

the fitting and partially (at the variables selection step) at LOO or LMO stages whereas the test 

compounds are never seen at any step of the modelbuilding. 
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Figure 8. Modeling of anti-HIV activity (Y = 
log(1/IC50)) of tetrahydroimidazobenzo-
diazepinone (TIBO) derivatives. The three plots 
show linear correlation for calculated versus 
experimental activities obtained for the training set 
at the fitting (a) and LOO (b) stages as well as for 
external test set (c). 

 

 

EXERCISE 2: Analysis of the fragment contributions for individual MLR model 

 

One may expect that the presence of some particular structural motifs increases or decreases the 

compound potency. In this exercise, we demonstrate how fragment contributions can be 

analyzed with the help of the MolFrag module which opens the Statistics of Substructural 

Molecular Fragments window (Figure 9). This tool provides the user with: 

a) the list of fragment descriptors and their contribution, minimal and maximal 

occurrence in the training set compounds (Model Parameters tab), 

b) an assessment of pairwise molecular similarity based on fragment descriptors 

involved in the model (Similarity tab), 

c) a pairwise correlation of these descriptors (Corerlations tab), 

d) the list of fragment descriptors involved in the model and their contributions for each 

molecule in the training set (SMF table tab). 

Some details of these functionalities are given below  

a b 

c 
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The Model Parameters tag displays two tables (Figure 9). The upper one shows the list of SMF 

descriptors (molecular fragments) generated for the training set. For each descriptor it reports: 

identification number (id), name (the denomination of the associated fragment), contribution 

(contrib.) and its standard deviation (SD), the minimal (min) and maximal (max) fragment counts 

over the training set, the number of the compounds containing the given fragment (mols). The 

lower table contains the groups of fragments always occurring in the same combination in 

certain compounds of the training set. The “main” (longest or lexicographically high-order path) 

fragment in the group is indicated by the "+" sign in the main column. The navigation buttons at 

the bottom are used to browse the fragment groups (Figure 9). 

 

Figure 19. MolFrag graphical interface 

 

The Similarity tab reports paitwise Tanimoto coefficients (TC) calculated with a help of 

fragment descriptors involved in the model. The user can enter a TC threshold value in the TC 

edit box then click on the Mark button to highlight the Tanimoto coefficients exceeding this 

threshold.  

The Correlations tab reports a pairwise correlation of the descriptors included in the 

model. The user can enter a threshold value of the squared correlation coefficient R2 in the R edit 

box then click on the Mark button to highlight in the Correlated fragments window all R2 
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exceeding this threshold. Clicking on any highlighted cell opens the Y versus X window which 

reports corresponding linear equation and related statistical parameters squared correlation 

coefficient (R2cor), Fischer's criterion (F) and standard deviation (s). 

The SMF Table tab summarizes occurrences of molecular fragments involved in the 

model. Click on a cell corresponding to a particular molecule (e.g., mol 1 cell) opens the 

Fragment Contributions window describing its 2D structure, constituting fragments and their 

contributions into the modeled property (Figure 11). 

 

Figure 11. Selected training set compound, its constituting fragments and their contributions into 

the modeled property 

 

 

EXERCISE 3: External n-fold cross-validation 

 

The external n-fold cross-validation procedure is often used [16, 23, 24] as a standard protocol 

for the estimation of the predictive performance of the model. According to this procedure, an 

entire dataset is split into n non-overlapping pairs of training and test sets. On each fold, a 

training set covers (n – 1)/n of the data points while related test set covers the remaining 1/n of 

the data points. The model developed on the training set is applied to the corresponding test set. 

Finally, predictions for all test sets are concatenated and, in such a way, all data points in the 

entire data set are predicted. Note that the bigger n, the larger the training set, meaning that the 

information available at model training stage – and hence, implicitly, the chance to encounter, at 

training stage, compounds that are similar to test molecules – is increased. Thus, the bigger n, the 

more “optimistic” cross-validation results become. The most aggressive cross-validation, at n = 

2, challenges a model trained on half of the original set to predict the other half, and therefore 

may be too pessimistic – unless very large data sets are used. At the other extreme of the 

spectrum, LOO cross-validation (which is nothing else but N-fold cross-validation, with N = 
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number of compounds in the entire set) is definitely too optimistic, but generates equations that 

are closest to the one that could be obtained on hand of the entire set.  

 

3.1. Setting the parameters 

Specify the parameters for the modelling as stated above in sections 1.1 – 1.8 of the Exercise 1. 

Then click on the Create MASK button of the single model calculations Dialog box (Figure 2). 

The Create Mask Dialog box appears (Figure 6). Click on Create MASK, No test set button. 

Click on the START button to save or overwrite the mask file AHIV-TIBO.MSK using the Save 

mask file Dialog. Click on the Data TEST button to verify if the input data are suitable for the 

modelbuilding (Figure 2). If this is a case, the Information dialog box displays a message: 

“Input data files are in internal agreement”. Close the Information dialog box. 

From the Validation panel (Figure 2), enter 5 in the External n-fold CV edit box to perform the 

modelling with external 5-fold cross-validation (5-fold CV). 

 

3.2. Analysis of n-fold cross-validation results 

Click on the Start button of the Single Model Calculations dialog box (Figure 2) to perform the 

calculations. The program creates 6 output files: 4 plain text files (*.TOM, *.DOC, *.AVE and 

*.ECV) and 2 files of the graphical presentation of results. 

 

The *.TOM file contains statistical parameters of the individual MLR model built on every fold 

of 5-fold CV calculations: 

 
5-Fold External Cross-Validation Procedure. 
 
... 
File of Mol Structures: AHIV-TIBO.SDF;  57 compounds in training set. 
Modeling Property Name: log_1_C_exp 
Mask File:              AHIV-TIBO.MSK 
Exter.Descriptors File: - 
... 
 no fragment  fitting     n    k   R2           F        FIT     s           HRF    Q2 
    type      equation 
   1 IAB2-12      0       45   13  0.943843     44.82    2.846   3.69E-01    5.410  0.901341 
   2 IAB2-12      0       45   15  0.964574     58.35    3.389   2.81E-01    4.109  0.905603 
   3 IAB2-12      0       46   10  0.913880     42.45    3.008   4.30E-01    6.700  0.862763 
   4 IAB2-12      0       46   20  0.982215     75.57    3.528   2.18E-01    2.847  0.937505 
   5 IAB2-12      0       46    9  0.888879     37.00    2.691   4.84E-01    7.448  0.789069 

 

For each fold, the following statistical parameters of related individual model are given: 

- the number of the data point (n) in the training set of 5-fold CV,  

- the number of fitted parameters (fragment contributions) (k),  

- squared Pearson correlation coefficient (R2),  

- the Fischer criterion (F),  
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- the Kubinyi fitness criterion [19] (FIT),  

- standard deviation (s),  

- the Hamilton R-factor percentage [25] (HRF) and  

- squared LOO cross–validation correlation coefficient (Q2). 

The *.DOC file reports the fitted property values for every fold of 5-fold CV: 
... 
TABLE L1. Training set: Calculated property log_1_C_exp for the compounds from the AHIV-TIBO.SDF 
file. 
                             1           2           3           4           5           
cmp. no.       Exp.     IAB2-120    IAB2-120    IAB2-120    IAB2-120    IAB2-120 
       1        7.34                    7.39        6.98        7.33        7.02 
       2        6.80        7.06                    6.98        7.03        7.02 
       3        5.20        5.49        5.26                    5.27        5.57 
       4        4.64        4.72        4.51        4.37                    5.20 
       5        4.49        4.33        4.51        4.37        4.39             

 

The *.AVE file contains the average fitted property and its standard deviation calculated from the 

data given in the described above *.DOC file  

In the *.ECV file, predicted in 5-CV property values (right column) are compared with the 

experimental ones given in the Datum column. If a compound is identified as being outside AD 

of the model, the predicted value for this compound is excluded (e.g., the case of compound 11): 

 
TABLE P1. Test set: Predicted property log_1_C_exp for the compounds from the AHIV-TIBO.SDF file. 
 
cmp. no.       Datum    IAB2-120 
       1        7.34        7.27 
       6        6.17        5.68 
      11        4.32             
      16        7.11        6.75 
      21        4.84        6.12 

 

The plots display the relationship between observed Yexp and predicted Ypred (or fitted Ycalc) 

property as well as corresponding linear equation and its statistical parameters, including data 

points for all folds cross-validation. Clicking on selected data point visualizes corresponding 

molecular structure and the Yexp and Ypred (Ycalc) values.  

 

 

EXERCISE 4. Consensus model: obtaining and validation 

 

The ISIDA_QSPR program may generate many different linear models, each involving 

particular set of SMF descriptors and /or variable selection technique. The individual models are 

recruited into the consensus model according to two criteria: the LOO cross–validation 

correlation coefficient Q2 should be larger than a user defined threshold Q2
lim and a residual (R2 – 

Q2) between the squared correlation coefficient (R2) and Q2 should also be larger than (R2 – 
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Q2)lim threshold (Figure 12). The program then applies this consensus model (CM) to every test 

compound, i.e., predicts the target property as an arithmetic average of the values estimated by 

selected individual models. A given individual model doesn’t contribute into consensus 

calculations if it produces the outliers according to Tompson’s rule [26] or it can’t be applied to a 

given compound due to applicability domain (AD) problem (Figure 12). Three types of AD 

criteria can be used simultaneously or individually: fragment control, bounding box [21] and 

"quorum control" [22]. 

In this tutorial, we use only a few descriptor types and one fitting equation type leading to 

generation of 144 individual models. It ensures short time of calculations and demonstrates 

ensemble learning and predictions by consensus model.  

 

 
Figure 12. Consensus calculations based on ensemble of selected individual models. 

 

4.1. Loading Structure-Data file 

Restart ISIDA_QSPR, upload input SD file and select the modelling property as shown in 

Exercise 1. Click on the Create MASK button. The Create Mask Dialog box appears (Figure 6). 

Click on the Create MASK Dialog box, No test set radio button. Click on START to save or 

overwrite the mask file AHIV-TIBO.MSK in the ISIDA_QSPR directory using the Save mask file 

Dialog. The MASK file: AHIV-TIBO.MSK label appears in the Data panel. Click on Data 

TEST to verify the consistency of input data (Figure 2). The Information dialog box appears 

with message: “Input data files are in internal agreement”. Close the Information dialog box and 

then the Single Model Calculations dialog box by clicking on the CANCEL button (Figure 2). 
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Figure 13. The consensus model calculations Dialog box. 

 

4.2. Descriptors and fitting equation 

Click on the Consensus Model button of the ISIDA_QSPR program (Figure 1) to open the 

Consensus Modelling Calculations Dialog box (Figure 13) used to enter parameters for 

consensus model. The dialog box includes the Data panel for data input, the Descriptors panel 

for selection of the SMF descriptor types, the Model panel for options of individual MLR 

equation types and forward and backward stepwise variable selection techniques, and the 

Validation panel for parameters of internal and external individual model validation (see details 

about validations in sections 1.6 and 3).  

From the Descriptors panel (Figure 15), check the Paths: Atoms-Bonds check box and 

then the equal length paths check box, enter 2-3 in the min edit box and 7-12 in the max edit 

box for minimal and maximal path lengths. Please, verify that there are no additional check 

marks in the check boxes of the Descriptors panel. Use by default 3 in the min count edit box 

and 1 in the min compds edit box (Figure 13). This setup leads to generation of two descriptor 

classes: a) shortest topological paths with explicit atoms and bonds and b) similar shortest paths 

including paths of equal length. For every class of the sequences, the minimal (2 ≤ nmin ≤ 3) and 

maximal (7 ≤ nmax ≤ 12) numbers of constituent atoms (n) are defined. The sequences include all 
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intermediate shortest paths with n atoms: nmin ≤ n ≤ nmax, thus leading to generation of 24 types 

of fragment descriptors.  

From the Model panel (Figure 15), click on the Y = SUM(Ai*Xi) check box for the 

selection of one linear fitting equation type only. 

 

4.3. Variables selection  

From the Model panel (Figure 13), check the FVS (forward variable selection) methods and 

backward variable selection check boxes in the Variable Selection subpanel. On the right of the 

FVS methods' combo box, enter 2,3 in the first edit box for the selection of the Ry,i and Ry,ij 

variable selection algorithms [4]. In the second edit box, enter 50-70 for the scalable numbers of 

pre-selected variables presented as the percentage of the training set size (m). In this case, 0.5m, 

0.6m and 0.7m variables will be pre-selected by the Ry,i (Ry,ij) algorithm and sequentially applied 

to individual model preparations. Enter 0.001 in the Ryi edit box and 0.99 in the Rij edit box for 

the correlation coefficient thresholds. Enter 1.96 in the t-test edit box, 1E-12 in the eps edit box 

and 0 in the exact edit box. Make sure that the m>n check box is not selected (Figure 13). 

 

4.4. Consensus model 

From the Model panel (Figure 13), enter 0.7 in the Q2 lim edit box for the threshold Q2
lim of 

minimal LOO cross–validation correlation coefficient (Q2) of acceptable individual models. 

Enter 0.1 in the R2 – Q2 edit box for the threshold of maximal residual between the squared 

correlation coefficient (R2) and Q2 of acceptable individual models.  

 

4.5. Model applicability domain 

From the Validation panel (Figure 13), user can select three AD approaches: fragment control 

(AD1), bounding box (AD2) and "quorum control" (AD3). Here, check the Appl. Domain 1 

check box and uncheck the Appl. Domain 2 and Appl. Domain 3 check boxes. 

 

4.6 n-Fold external cross-validation 
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From the Validation panel (Figure 13), check the LOO and rapid check boxes for fast 

calculation of Q, enter 5 in the External n-fold CV edit box for the execution of the external 5-

fold cross validation. 

 

4.7. Saving and loading of the consensus modeling results 

The program saves the output files in user-defined directory by clicking on the Select Directory 

button (Figure 13). The Open dialog box appears, where click on Open to select a directory, for 

instance, C:\ISIDA_QSPR\RESULTS.  

The output files can always be opened by clicking File → Open in the ISIDA_QSPR main menu 

(Figure 1). Typically, the *.out file includes the name of the input SD file name as substring and 

begins with the date and the time of the performed calculations. Verify that the Save Models 

check box is not selected in the right corner of the dialog box (Figure 13). 

 

4.8. Statistical parameters of the consensus model 

In order to obtain an ensemble of individual models forming CM, click on START in the 

Consensus Modelling Calculations Dialog box (Figure 13). The program creates 8 output files: 

6 plain text files and 2 files of the graphical presentation of results, see their description below.  

 

The *.TOM file contains statistical parameters of the individual MLR models for every fold of 

CV: 
5-Fold External Cross-Validation Procedure. Table of models. 
 
=>  Subset 1/5 
 
File of Mol Structures: AHIV-TIBO.SDF;  45 compounds in training set. 
Modeling Property Name: log_1_C_exp 
Mask File:              AHIV-TIBO.MSK 
 
 
  no fragment  fitting    n    k   R2            F       FIT     s          HRF      Q2 
     type      equation 
   1 IAB3-837     0       45   13  0.951211     51.99    3.301   3.44E-01    5.043  0.904357 
   2 IAB2-1036    0       45   13  0.943843     44.82    2.846   3.69E-01    5.410  0.901341 
   3 IAB2-1136    0       45   13  0.943843     44.82    2.846   3.69E-01    5.410  0.901341 
   4 IAB2-1236    0       45   13  0.943843     44.82    2.846   3.69E-01    5.410  0.901341 
   5 IAB2-10a26   0       45   10  0.933738     54.80    3.914   3.83E-01    5.877  0.896698 
... 

 

For each individual model, the following parameters are reported: the number of the data point 

(n) in the training set at a given fold CV, the number of fitted variables (k), squared Pearson 

correlation coefficient (R2), the Fischer criterion (F), the Kubinyi fitness criterion [19] (FIT), 

standard deviation (s), the Hamilton R-factor percentage [25] (HRF) and squared LOO cross–
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validation correlation coefficient (Q2). The models are sorted according to Q2 in descending 

order. 

The *_TST_5fCV_.AVE file reports for the compounds of the test set at the given fold the 

following parameters: average predicted property values (Average) and their standard deviation 

(STDEV) estimated by consensus models and the number of the individual models (Nm) used for 

the Average value calculation. If a compound is identified as being outside AD of any individual 

model, no predictions are reported (e.g., see compound 11): 

TABLE PA. Test set: Average predicted property log_1_C_exp 
 
 cmp. no.       Datum   Average         STDEV          Nm    Dat.- Ave. 
       1        7.34  7.23103E+000    4.080E-001       97    1.090E-001 
       6        6.17  6.09287E+000    3.144E-001       80    7.713E-002 
      11        4.32                                    0 
      16        7.11  6.42392E+000    3.050E-001      102    6.861E-001 
... 

 

The *.TSP file contains property values predicted by individual MLR models for every fold of 

cross-validation: 

5-Fold External Cross-Validation =>  Subset 1/5 
File of Mol Structures: AHIV-TIBO.SDF 
Property Name:          log_1_C_exp 
Mask File:              AHIV-TIBO.MSK 
 
TABLE P1. Test set: Predicted property log_1_C_exp 
          102 Selected MODELs, Q2 >= 0.7 
 cmp. no.       Datum   IAB3-8370  IAB2-10360  IAB2-11360  ... 
       1        7.34        6.67        7.27        7.27   ... 
       6        6.17        5.80        5.68        5.68   ... 
      11        4.32                                       ... 
      16        7.11        6.34        6.75        6.75   ... 
      21        4.84        5.50        6.12        6.12   ... 
... 

 

Remaining three text files, similarly to described above *_TST_5fCV_.AVE and *.TSP files, 

contain information about fitted property values for the compounds of training sets at each fold.   

The plots display the relationship between observed Yexp and predicted Ypred (or fitted Ycalc) 

property as well as corresponding linear equation and its statistical parameters, including data 

points for all folds cross-validation. Clicking on selected data point visualizes corresponding 

molecular structure and the Yexp and Ypred (Ycalc) values.  

 

4.9. Consensus model performance as a function of individual models acceptance threshold  

The consensus model predictive performance depends on recruited individual models which 

selection, in turn, depends on user-defined threshold Q2
lim for determination coefficient of LOO 

calculations (see introduction to Exercise 4). Treating the output of consensus modeling the user 
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can build a plot of the dependence of determination coefficient R2
det in n-fold CV as a function of 

Q2
lim which may help to determine an optimal Q2

lim value providing with reasonable R2
det.  

 

Click Tools → R2det vs Q2 of the ISIDA_QSPR main menu (Figure 1) to open the Averaging 

tool (Figure 14), which enables to explore n-fold CV determination coefficient R2
det as a function 

of Q2
lim. In this window check use Q2 threshold and do R2det vs Q2 boxes, enter 0.7 in the use 

Q2 threshold edit box, enter the increment value 0.05 in the Step edit box. In order to load 

consensus model information, click File → Open of the Averaging window. In the Open dialog 

box select the <date_time_>AHIV-TIBO_5fCV.TSP file from the list of the *.TSP files in the 

directory, where the consensus modelling results are saved (e.g., C:\ISIDA_QSPR\RESULTS 

directory) and then click Open. The Open dialog box appears again. Select the proper 

<date_time_> AHIV-TIBO_5fCV.TOM file from the list of the *.TOM files in the same directory, 

click the Open button. After the Averaging tool performed calculations, click the Graph tab 

(Figure 14). The plot displays the relationship between R2
det and Q2

lim. One can see that R2
det 

insignificantly increases with Q2
lim: R2

det = 0.881 at Q2
lim = 0.70 and R2

det = 0.883 at Q2
lim = 0.85. 

The complementary textual information related to this plot is available in the Table tab (Figure 

14).  

 

 
Figure 14. The Averaging tool graphic interface. 
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4.10. Building consensus model on the entire data set 

This section explains how to build and save the CM on the entire data set. Click the Consensus 

Model button of the ISIDA_QSPR program (Figure 1) to open the Consensus Modelling 

Calculations Dialog box (Figure 13). Keep all previously used settings (Figure 13) except the 

number of folds and the name of directory for output files. Enter 1 in the External n-fold CV edit 

box to deactivate n-fold CV. Check the Save Models check box, click on the Select Directory 

button. In the Open dialog box select a directory (e.g., C:\ISIDA_QSPR\AHIV-

TIBO_MODELS. Click START to prepare and save a set of individual MLR models.  

 

The program creates and opens 5 output files: 4 plain text files and 1 file of the graphical 

presentation of results which are similar to the files for training subsets in n-fold CV described in 

Section 4.8. The consensus model is described in AHIV-TIBO.TSC and AHIV-TIBO.TOM files 

containing information about 117 constituting individual models (the *.SPE files). 

 

 

EXERCISE 5. Property predictions and virtual screening using consensus models 

 

This exercise demonstrates the Consensus Predictor program tool [27] which applies previously 

obtained consensus models to an external data set. As an input, Consensus Predictor uses 

chemical structures in SDF format [8]. The input can also include experimental or estimated 

property values in a data field named as a property aimed to be predicted with the help of stored 

QSPR model (see Section 3.1). In this case, this input value will be compared with the predicted 

one followed by the assessment of prediction performance.  

 

5.1. Loading input data 

Click Tools → Property Prediction of the ISIDA_QSPR main menu (Figure 1) to open the 

Consensus Predictor graphical interface (Figure 15). Click LOAD, then select in the Open dialog 

box the TEST_AHIV-TIBO.SDF file from the list. The <...>\ISIDA_QSPR\TEST_AHIV-TIBO.SDF 

string appears under the upper LOAD button indicating that the selected file is downloaded. At 

the same time, the output file name <...>\ISIDA_QSPR\TEST_AHIV-TIBO_FMF.TSP appears under 

the SAVE button.  
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Figure 15. The Consensus Predictor program tool. 

 

5.2. Loading selected models and choosing their applicability domain 

Click the lower LOAD button on the Consensus Predictor window (Figure 15). In the Open 

dialog box open the AHIV-TIBO_MODELS directory containing stored MLR models (see Section 

3.11), select any *.SPE file from the list. The *.SPE file names appear in the left list box of 

Consensus Predictor. Click the >> button to select all *.SPE files. The list of the 117 models 

appears in the right part of the box. Make sure that the MODELS with Marked atoms 2 and 

MODELS with Marked atoms 3 check boxes are not selected. 

The program uses three types of AD definitions to ensure reliable predictions. Check the 

Appl. Domain1 (AD1), Appl. Domain2 (AD2) and Appl. Domain3 check boxes for the strict 

AD control. Enter 50 in the edit box of percentage of applicable individual models (i.e. the 

models for which AD1 and AD2 do not discard the given molecule). If this number is lower than 

a threshold, the overall CM prediction is ignored. 

 

5.3. Reporting predicted values 
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Click the Launch Predict button of Consensus Predictor (Figure 15) and agree to overwrite the 

output *.TSP file if it does exist. Results of the calculations are given in four tabs of the 

Consensus Predictor window. The Average tab reports for each molecule the average predicted 

property value (Average), its standard deviation (STDEV) estimated by CM and the number of 

the individual models (Nm) used for the Average value calculation. If for some compounds, 

experimental or somehow estimated property values are known (e.g., compounds 1 – 5); they are 

displayed in the Datum column. If a compound is identified as being outside AD, the predicted 

value for this compound is not given (e.g., for compound 11): 

 
TABLE PA. Average predicted property log_1_C_exp  
           
cmp. no.        Datum  Average         STDEV           Nm    Dat.- Ave. 
       1        7.92  7.96224E+000    5.925E-002       74   -4.224E-002 
       2        7.64  7.59814E+000    1.160E-001       99    4.186E-002 
       3        8.30  8.31903E+000    6.017E-002       74   -1.903E-002 
       4        7.86  7.50816E+000    3.707E-002       81    3.518E-001 
       5        7.53  7.50816E+000    3.707E-002       81    2.184E-002 
       6           -  6.67168E+000    4.470E-001      117 
       7           -  7.07149E+000    1.500E-001       95 
       8           -  7.53993E+000    1.078E-001       87 
       9           -  8.98958E+000    1.957E-001       91 
      10           -  7.48592E+000    4.201E-001      111 
      11           -                                    0 
      12           -  8.47588E+000    2.735E-001       98 

 

Click the Graph tab. For the compounds 1 – 5 with known activity, a plot displays a linear 

correlation between observed Yexp and predicted Ypred property and related statistical parameters.. 

Click on selected data point, and then click the MOL Structure tab in order to visualize a 

corresponding molecular structure. 

 

5.4. Analysis of the fragments contributions  

Click Tools → Fragment Contributions of the Consensus Predictor main menu (Figure 15) to 

open the Fragment Contributions for Molecule window (Figure 16). This window includes 2D 

structure , its constituting fragments, their occurrence and contributions in the context of selected 

individual MLR model. Enter 9 in the Mol Number edit box to examine the compound predicted 

as the most active, select any individual model by the dropdown Selected Model. 



28 
 

 

Figure 16. The graphic window of Fragment Contributions for Molecule. 
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